11 - Pathfinding

Joseph Afework
CS 241

Dept. of Computer Science
California Polytechnic State University, Pomona, CA




Intro
Shortest Path

Weighted Edges

Single-Source Shortest Path Algorithms

(@)

(@)
(@)
(@)

Brute force Method

Relaxation Method

Bellman-Ford Algorithm

Dijkstra’s Algorithm (next lecture)



Reading Assignment

e Read Chapter 28 - Graphs
o Chapter 23 (Read about: Examples and Terms, Traversals, DFS, BFS)



Consider a network:




e Canyou use DFS or BFS to find a path? YES
o  Start by performing DFS or BFS from (starting node)
o  Continue algorithm until (target node) is processed
o If target node is not found: Path doesn't exist

Question:
e How does the process work with ambiguous paths (loops)?
e Does this process identify the optimal path?



Weighted Graphs

Network Example
e Inthe network, each wire might have a "cost" associated with using the
wire. The cost could be the amount of energy required to use the path, or
the amount of time required for the wire to transmit a message, etc.
e We want to find the path with the lowest total cost
o (the path with the lowest possible sum of its edge costs - shortest
path).




Weighted Graph Contd.

e Use adigraph in which each
edge has a non-negative value
attached to it, called the weight
or cost of the edge.




ICE 11.1 Weighted Graph

Questions:

1. How many paths are there
from VO to V2?

2. What is the path with the
lowest total cost (shortest
path)?




Concepts

e A weighted edge is an edge together with a non-negative integer called the
edge's weight.

e The weight of a path is the total sum of the weights of all the edges in the
path.

e If two vertices are connected by at least one path, then we can define the
shortest path between two vertices, which is the path that has the smallest
weight.

o Note: (There may be several paths with equally small weights, in which case each of the
paths is called "smallest”).



Shortest Path

e Finding the shortest path is extremely useful (real-world application):
o So.. How can we find it... programmatically

e Let's Define the problem




Shortest Path Definition

Given a directed graph:

G=(V,E)

edge-weight function w: E -> R

pathp = v ->v,->..->v,

weight of p, denoted w(p), is w(v,, v,) + w(v,, v,) + ... + (v, , V,).

A shortest path weight 8(u, v) from u to v is the weight of any such shortest path:

e &(u,v) =min{w(p): p is a path from u to v}
e If there is no path from u to v, then neither is there a shortest path from u to v.
o Define 8(u, v) = 0o in this case.



Shortest Path Contd.

e A shortest path from u to v might not exist, even though there is a path
from utov.

e Note: When the edges have negative edge weights, some shortest paths
may not exist.

o Example: Negative weights...

e Negative weight cycle: ¢ = v.->v,-> ... ->v,->v_ has w(c) < 0.
o Define 8(u, v) = -0 if there's a path from u to v that visits a negative weight cycle.




Shortest Path Problem

Problem:
From a given source vertex s in V, find the shortest path weights for all vertices in V.
Solution:

Given a directed graph G = (V, E) with edge-weight function w: E -> R, and a source vertex
S

compute &(s, v) forall vin V.



Shortest Path Solutions

e Single-Source Shortest Path Algorithms

o Relaxation algorithm: framework for most shortest path problems. Not
necessarily efficient
Bellman-Ford algorithm: deals with negative weights, slow but polynomial
Dijkstra's algorithm: fast, requires non-negative weights



Brute Force Method

Pseudocode Problems

Distance(s, t): e The number of paths can be infinite when
there's negative-weight cycles.

Let's assume there's no negative-weight
cycles, the number of paths can be
exponential.

for each path p fromsto t: A
compute w(p)

return p encountered with smallest w(p) Can be very inefficient

Are there better ways?



Relaxation Method

Overview: Steps:
e Compute the distances instead of the e Distance from any vertex to itself = 0
shortest path. e Begin with overestimated distance to
e Once the minimum distance is computed, every vertex, set distance to positive
the path that makes the distance can be infinity
easily found. e lterate over the edges, factoring in the

distance cost to each vertex.
o If adistance is found with a lower cost,
update the distance.



Relaxation Method Contd.

Pseudocode
forvin V:

v.d = infinity
sd=0

while some edge (u, v) has v.d > u.d + w(u,v):

pick such an edge (u, v)
relax(u, v):
if v.d > u.d + w(u,v):

v.d = u.d + w(u,y)

Note:

Iterate over the edges, factoring in the distance
cost to each vertex.

o

O

If a distance is found with a lower cost,
update the distance.
This means a shorter path to v by way of u




Relaxation Pitfalls

Pseudocode 1. If anegative-weight cycle is reachable
from source s, then the relaxation can
forvin V. never terminate.
v.d = infinity
sd=0
while some edge (u, v) has v.d > u.d + w(u,v): 2. A poor choice of relaxation order can lead

to exponentially many relaxations.
pick such an edge (u, v) Y y y

relax(u, v):
if v.d > u.d + w(u,v):

v.d =u.d+w(uyv)



Bellman-Ford Algorithm

e The Bellman-Ford algorithm: computes single-source shortest paths in a
weighted diagraph.

o Named after its developers, Richard Bellman and Lester Ford, Jr.

e The Bellman-Ford algorithm is used primarily for graphs with negative
weights.



Bellman-Ford Limits

Note: The algorithm can detect negative cycles and report their existence,
but it cannot produce a correct "shortest path” if a negative cycle is
reachable from the source.

For graphs with non-negative weights, Dijkstra's algorithm (next lecture)
solves the problem. Make sure to consider the limits when picking an
algorithm to solve a problem.



Bellman-Ford Algorithm

Pseudocode

function BellmanFord:
// step 1: initialize graph
foreach v in V:
v.d = infinity
s.d = 0

// step 2: relax edges repeatedly
for i from 1 to |V|-1:
foreach edge (u, v) in E:
if u.d + w(u, v) < v.d:
v.d = u.d + w(u, v)

// step 3: check for negative-weight cycles
foreach edge (u, v) in E:
if u.d + w(u, v) < v.d:
error "Graph contains a negative-weight cycle"

Process

e The algorithm simply relaxes all the edges,
and does this |V|-1 times
|V| is the number of vertices in the graph.

e The repetitions allow minimum distances
to propagate accurately throughout the
graph, since in the absence of negative
cycles, the shortest path can visit each
node at most only once.



Bellman-Ford Example

Problem: Find the shortest path from 0 to all
other vertices
o

u = start vertex
v = end vertex

u — v = directed edge from vertex u to v

w(u,v) = weight of the directed edge u — v



Bellman-Ford Example

Edge |Weight
0o—=+1| 5
0—-2| 2
10| 3
13| 4
23| 6
30| -1

if there are N vertices then we will
iterate N - 1 times to get the
shortest distance

and we do the Nth iteration to check
if there is any negative cycle

the graph has 4 vertices so we will
iterate 3 times to find shortest distance

and we will perform the 4th iteration to check
if there is any negative cycle



Bellman-Ford Example

Edge |Weight array d contains the distance to the
'0 g respective vertices from the source vertex
-
02| 2 _ : ;
array p contains the predecessor of the respective vertices

1—-0 3

1—3 4

23| 6

3—>0/| -1




Bellman-Ford Example

Sl R now we fill the predecessor array p with -
0o-1| 5
02| 2
1—=0 3
13| 4
23| 6
3-+0/| -1




Bellman-Ford Example

Relax Edge

Consider an edge u — v where u is the start and v is the end vertex respectively.
Relaxing an edge relax(u,v) means to find shorter path to reach v when
considering edge u = v

relax(u,v) . .

if v.d > u.d + w(u,v) then so, if there exists a better path to reach vertex v
v.d = u.d + w(u,v) then we update the distance and predecessor of
V.p = U vertex v

where

v.d = distance from source vertex O to vertex v
u.d = distance from source vertex O to vertex u
w(u,v) = weight of the edge u — v @

" OT vc




Begin 1st Iteration



0 1

tt

a.d 1.d

put5ini1dandOin 1.p

— w(0,1) iteration 1
start vertex u =0

consider the edge O — 1 end vertex v = 1

ud=0d=0 relax(0,1):
= 1.6 = weo !S1.d>0.d+W(0,1)
iISco>0+5
w(u,v) =w(0,1) =5 YES
soral=lud =) 4 b =5
and p—.p.—LL=.0




0 1

to

0.d 1.d

put5in1t.dandOin 1.p

— w(0,1) iteration 1
start vertex u =0

consider the edge 0 — 1 end vertex v = 1

ud=0.d=0 relax(0,1):

vl = 7.8 = o ?s1.d>0.d+w(0,1)
IS0 >0+ 5

w(u,v) =w(0,1) =5 YES

so =l =) .6 —§

and.arne el 0




0 2

A

0.d 2.d

iteration 1

tid =0.d = 0

v.d = 2.0 = =

w(u,v) = w(0,2) =2

put2in2.dandO0in 2.p

start vertex u =0

— w(0,2) consider the edge O — 2 end vertex v =2

relax(0,2):

is 2.d > 0.d + w(0,2)
IS0 >0+ 2

YES

s vd=2cd=0+2 =2
and,v.p=2.p=u=0




0

2

;

0.d

iteration 1

nd=0d=0

Vil = 2.d = oe

;

2.d

w(u,v) = w(0,2) =2

put2in2.dandOin2.p

start vertex u =0

— w(0,2) consider the edge 0 — 2 end vertex v = 2

relax(0,2):

is2.d > 0.d + w(0,2)
IS0 >0+ 2

YES
sovd=2d=04+2=2
and asb. 2.0 Lo 0




0 1

tt

0.d 1.d

iteration 1
start vertex u = 1

consider the edge 1 = 0 end vertex v =0
— w(1,0 = =
(1.0) ud=1d=5 relax(1,0):
vd=0d=0 is 0.d > 1.d + w(1,0)

_ _ isO>5+3
w(u,v) =w(1,0) =3 NO




3

iteration 1

ud=1d=5

—W(1,.3) yd=3d=w

w(u,v) =w(1,3) =4

3.d
put9in3.dand 1in3.p

start vertex u = 1

consider the edge 1 — 3 end vertexv =3

relax(1,3):

is3.d>1.d+ w(1,3)
IS0 >5+4

YES
so,vd=3d=5+4=9
and, vp = 3.p = u = 1




3

'

3.d

put9in3.dand 1in3.p

iteration 1
start vertex u = 1

considerthe edge 1 —+ 3 end vertex v =3

ud=1d=5 relax(1,3):

—wW(1,3) yg=3d= oo !33.d>1.d+w(1,3)

iSco>5+4

w(u,v) =w(1,3) =4 YES
so.vd=3d=5+4=9
and, v.p.=3.p.=u =1




2 3

2 9
2d 3.d
put8in3.dand 2in 3.p

iteration 1
start vertex u = 2

consider the edge 2 =+ 3 end vertex v =3

ud=2d=2 relax(2,3):

Is3.d>2.d+ w(2,3

VE =S8=9 IS9>2+6 =9
—W(2,3) wu,v)=w(2,3)=6 YES
so,vd=3d=2+6=38
and s D=l =2




2 3

2 8
2d 3d
put8in3.dand2in 3.p

iteration 1
start vertex u = 2

consider the edge 2 —+ 3 end vertex v =3

uel=24d=2 relax(2,3):

_ _ is 3.d > 2.d + w(2,3)
eat DU iSO>2+6

—W(2,3) w(u,v)=w(2,3)=6 YES
so,vd=3d=2+6=8
apdarp= 3.0 L2




o

;

0.d

iteration 1

start vertex u = 3
consider the edge 3 =+ 0 end vertex v =0

gyd=346=8 relax(3,0):

== Is 0.d > 3.d + w(3,0)
T is0>8+-1

w(u,v) = w(3,0) =-1 NO




Begin 2nd Iteration



0 1

to

0d 1.d

— w(0,1) iteration 2
start vertex u =0

consider the edge O — 1 end vertex v = 1

ud=0d=0 relax(0,1):
vd=1d=5 is 1.d > 0.d + w(0,1)

_ _ is5>0+5
w(u,v) = w(0,1) =5 NO




0

?

0.d

iteration 2
start vertex u =0

— w(0,2) consider the edge 0 — 2 end vertex v = 2
ud=0.d=0

relax(0,2):
vid=2d=2 is 2.d > 0.d + w(0,2)

_ _ is2>0+2
w(u,v) = w(0,2) =2 NO

so, we move to the next edge




0 1

tot

0.d 1.d

iteration 2
start vertex u = 1

considertheedge 1 = 0O end vertex v =0
—wW(1,0) ud=1d=5

relax(1,0):
vid =0.d=0 is 0.d > 1.d + w(1,0)

_ _ isO>5+3
w(u,v) = w(1,0) =3 NO




iteration 2
start vertex u = 1

consider the edge 1 — 3 end vertex v =3
nd=1d=5

relax(1,3):
—wW(1,3) yvg=3d=8 is3.d>1.d + w(1,3)

is8>5+4
NO
SO, we move to the next edge

w(u,v) =w(1,3) =4




iteration 2
start vertex u = 2

consider the edge 2 — 3 end vertexv =3
ud=2d=2

relax(2,3):
Vid=8d=8 is 3.d > 2.d + w(2,3)

— w(2,3) _ _ S8>24+6
w(u,v) = w(2,3) =6 NO




0

;

0.d

iteration 2
start vertex u = 3

consider the edge 3 = 0O end vertex v =0

ua = 3.d=8 relax(3,0):

v = Gid =0 !s 0.d > 3.d + w(3,0)
isO>8 + -1

w(u,v) = w(3,0) =-1 NO
we reached the last edge so its
time to move to iteration 3




3rd Iteration omitted for brevity
(no changes to distances were found)



after completing iteration 3 we get the shortest distance
now in order to check if there is no negative cycle
we have to perform the 4th iteration

if there is a change in value even in the 4th iteration then there
IS a negative cycle and we cannot determine the shortest distance




If there is no change in the distance and predecessor array in ith iteration

then we can skip the iterations following the ith iteration as we will not get
any change in those iterations




Bellman-Ford Performance

Best Case: O(|E|) OO0 0

e Graph is a simple chain, only path is the optimal path.

Worst Case: O(|V||E|)

e Outer for loop runs at |V|
e Inner for loop runs at |E|



References

Bellman-Ford

https://www.youtube.com/watch?v=hxMWBBCpR6A

https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm



https://www.youtube.com/watch?v=hxMWBBCpR6A
https://www.youtube.com/watch?v=hxMWBBCpR6A
https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm

